Scalable quantum systems require deterministic entangled photon pair sources. Here, we demonstrate a scheme that uses a dipole-coupled defect pair to deterministically emit polarization-entangled photon pairs. Based on this scheme, we predict spectroscopic signatures and quantify the entanglement with physically realizable system parameters. We describe how the Bell state fidelity and efficiency can be optimized by precisely tuning transition frequencies. A defect-based entangled photon pair source would offer numerous advantages including flexible on-chip photonic integration and tunable emission properties via external fields, electromagnetic environments, and defect selection.

Last updated on 12/09/2020