New developments in manufacturing and automation, from three-dimensional printing to the “Internet of things,” signify dramatic changes in our society. The push toward quantum materials is driving device fabrication toward atomic precision. Recent results suggest that scanning transmission electron microscopy (STEM) with sub-angstrom scale beams could offer a solution. However, a detailed theoretical understanding of the interaction of the electron beam with solids is needed to form a basis for new technology. This article summarizes the existing literature on electron-beam interactions with solids with a focus on irreversible transformation. We further suggest that the theoretical framework of a two-temperature model developed for fast ion damage in solids could be applicable to predicting the effects of fast electrons. Recent results from STEM-directed epitaxial growth on crystalline–amorphous interfaces are discussed in detail. Finally, perspectives on the development of this field in the near future are offered.

Last updated on 07/13/2018